Focal Modulation Microscopy: Principle and Techniques

نویسندگان

  • Nanguang Chen
  • Guangjun Gao
  • Shau Poh Chong
چکیده

Focal modulation microscopy (FMM) is an emerging single-photon fluorescence microscopy technique that can provide superior image contrast with sub-micron spatial resolutions at large penetration depths in highly scattering media such as biological tissues, mainly by preserving the signal-to-background ratio (SBR). To achieve this, FMM utilizes the coherence property of the light source, through a spatio-temporal modulation scheme to differentially phase modulate segments of the excitation beam. These segments of the beam, when being focused by the objective lens, generate an intensity modulation exclusively at the focal region. Demodulation of the collected fluorescence signal at the designated modulation frequency could allow us to discriminate the in-focus fluorescence from the multiple-scattered background, hence greatly enhance the SBR compared to confocal microscopy. More importantly, the penetration depth of FMM can be significantly improved as the degradation of the image contrast is considerably much slower, and thus could potentially revolutionize the clinical and biomedical applications of FMM for in vivo highresolution visualization of biological specimens. Up to date, a penetration depth up to はどど 航兼 has been demonstrated with biological specimens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-speed focal modulation microscopy using acousto-optical modulators

Focal Modulation Microscopy (FMM) is a single-photon excitation fluorescence microscopy technique which effectively rejects the out-of-focus fluorescence background that arises when imaging deep inside biological tissues. Here, we report on the implementation of FMM in which laser intensity modulation at the focal plane is achieved using acousto-optic modulators (AOM). The modulation speed is g...

متن کامل

Design and Performance Analysis of 7-Level Diode Clamped Multilevel Inverter Using Modified Space Vector Pulse Width Modulation Techniques

In this paper, a 7-level Diode Clamped Multilevel Inverter (DCMLI) is simulated with three different carrier PWM techniques. Here, Carrier based Sinusoidal Pulse Width Modulation (SPWM), Third Harmonic Injected Pulse Width Modulation (THIPWM) and Modified Carrier-Based Space Vector Pulse Width Modulation (SVPWM) are used as modulation strategies. These modulation strategies include Phase Dispos...

متن کامل

Phase modulation atomic force microscope with true atomic resolution

We have developed a dynamic force microscope DFM working in a novel operation mode which is referred to as phase modulation atomic force microscopy PM-AFM . PM-AFM utilizes a fixed-frequency excitation signal to drive a cantilever, which ensures stable imaging even with occasional tip crash and adhesion to the surface. The tip-sample interaction force is detected as a change of the phase differ...

متن کامل

Leakage radiation interference microscopy.

We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multil...

متن کامل

Profilin connects actin assembly with microtubule dynamics

Profilin controls actin nucleation and assembly processes in eukaryotic cells. Actin nucleation and elongation promoting factors (NEPFs) such as Ena/VASP, formins, and WASP-family proteins recruit profilin:actin for filament formation. Some of these are found to be microtubule associated, making actin polymerization from microtubule-associated platforms possible. Microtubules are implicated in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012